
1

Connect STG マニュアル

平成 30年 2月 6日

大阪電気通信大学高等学校

岸本 有生

１．はじめに

 シューティングゲームに特化したプログラミング言語 Connect STGのマニュアルです。

２．プログラム記述場所

 キャラクターの動作は、スクリプトファイルに記述する。各キャラクターの個別の動作は、表

１のように、ファイル別に記述する。最大数は、画面上に出る最大の個数を示している。

ConnectSTG.exeを実行(ゲームを起動)することにより、キャラクターがプログラム通りに動作

する。ゲーム実行時は、ESCキーを押すと終了させることができる。

表１ プログラムファイル名

スクリプトファイル名 最大数 キャラクター

player.txt

enemy.txt

pmissile.txt

emissile.txt

1体

20体

100発

100発

自機

敵機

自機弾

敵機弾

2

３．画像ファイル

 画像は、表２のファイル名で保存すると使用できる。画像の一部を透明にした透過 png を使

用しても表示できる。画像の大きさは、自機、敵機は 32×32 pixel が望ましい。自機弾、敵機

弾は 6×6～10×10 pixel の間の大きさを使用するのが望ましい。ファイル名の*には半角数字

を’0’から連番でいれる。プログラム内で変数 gpの値を変更すると対応する番号の画像に変更さ

れる。

表２ 画像ファイル名

画像ファイル名 画像の大きさ(pixel) キャラクター

player*.png

enemy*. png

pmissile*.png

emissile*.png

32×32

32×32

6×6～10×10

6×6～10×10

自機

敵機

自機弾

敵機弾

４．画面構成

 ゲームを起動すると、図１のような 640×480の大きさのフィールドに自機が配置される。自

機の表示位置は、x軸が 320、y軸が 450である。画像ファイルは、x軸 y軸を中心として画像

が表示される。自機はフィールド外に出ていかないように、ｘ軸ｙ軸の値を自動的に補正してく

れる。敵機、自機弾、敵機弾は、フィールド外に行くと消滅する。各パラメータの範囲や役割は、

９節の表３を参照すればよい。

図１ 実行画面

x=320,y=450

自機

0 640

0

480

x軸

y軸

3

５．当たり判定

 このゲームでは、①「自機弾と敵機」②「敵機弾と自機」③「自機と敵機」に当たり判定が設

けられており、図２のようにキャラクターが近づく事により次の式が適用される。当たり判定が

実行され、lifeが０になるとキャラクターは消滅する。自機の lifeが０になると、自機が消滅し、

画面に「GAME OVER」と表示される。

① 自機弾と敵機 ② 敵機弾と自機 ③自機と敵機

図２ 当たり判定

新しい自分の体力 ＝ 現在の自分の体力 － 相手の攻撃力 (1)

新しい相手の体力 ＝ 現在の相手の体力 － 自分の攻撃力 (2)

ただし、③「自機と敵機」のあたり判定がヒットした場合は式(1)のみが適用される。また、②

「敵機弾と自機」もしくは、③「自機と敵機」がヒットした場合、自機は 40フレームの間、当

たり判定が行われない無敵状態となる。

６．プログラムの記述とエラー

 プログラムの各命令の最後には必ずセミコロン「；」をつける必要がある。ただし、if,while,for

文に於いて{ }を用いる場合は、その後ろにセミコロンをつける必要はない。プログラムの記

述エラーや計算時に型のエラーが生じた場合、メッセージボックスのタイトルにファイル名が

表示され、エラーが起きた行や問題点を表示してくれる。

自機弾

敵機

距離が 20pixelより

短い場合ヒット

敵機弾

自機

距離が 16pixelより

短い場合ヒット

敵機

自機

距離が 25pixelより

短い場合ヒット

4

７．プログラムの動作順

 図３には、プログラム動作の順番を記述している。ゲームは、自機・敵機・自機弾・敵機弾の

プログラム順に実行される。プログラムが全て実行されると、ゲームが１フレーム進んだことに

なり、変数 frameが加算され、各キャラクターの変数 timer1,timer2が減算される。ESC キー

が押された時や、プログラムの記述にエラーが起きた時に、プログラム終了が Yesとなりループ

から抜ける。

図３ フローチャート

８．定数

この ConnectSTGで、扱う値は下記のものである。

① Int型 : 整数 (32bit) - 2,147,483,648 ～ 2,147,483,647

② Bool型 : 論理(真-Yes・偽-No) true,false

９．変数名

 変数は、データを記憶できることのできる箱(メモリ)である。変数 frame以外は、各キャラク

ターが互いに干渉しあわずに独立して変数を宣言して使用できる。変数の宣言は、定数を記憶(代

入)させればよい。変数の名前の付け方は、’0’～’9’の数字、’a’～’z’または’A’～’Z’のアルファベット

で構成される。ただし、先頭で使用する文字は、必ずアルファベットでなければいけない。また、

変数の名前に、命令と同じ物や予約語(if,for,whileなど)は使用できない。

例)

① a = 0; 変数 aに 0を記憶(代入)する。

② ab0 = 0; 変数 ab0に 0を記憶(代入)する。

③ 0a = 0; 変数名の先頭が数値なので宣言できない。

④ if = 0; 予約語を変数名にはできない。

各キャラクターに予め宣言されている予約変数が存在する。表３にその変数名と役割を示す。

予約変数を使用したプログラミングを行えば、開発がスムーズに行える。ただし、変数 frameは、

全キャラクター共通で値を保持しており、値を変更すれば全てのキャラクターに反映される。

自機のプログラム

敵機のプログラム（20体）

敵機弾のプログラム（100発）

自機弾のプログラム（100発）

プログラム終了

Yes

No

Start

End

１フレーム

5

表３ 各キャラクター予約変数

変数名 数値 役割

x

16～624(自機)

-32～672(敵機、自機弾、敵機弾)

自機は、数値が範囲外に行くと補正。

敵機、自機弾、敵機弾は、数値が範囲

外に行くと消滅。

x軸

当たり判定に使用。

記憶された場所にキャラクターが描画され

る。

y

16～464(自機)

-32～512(敵機、自機弾、敵機弾)

自機は、数値が範囲外に行くと補正。

敵機、自機弾、敵機弾は、数値が範囲

外に行くと消滅。

y軸

当たり判定に使用。

記憶された場所にキャラクターが描画され

る。

dx

dy
-2,147,483,648 ～ 2,147,483,647

x軸移動量

y軸移動量

 x = x + dx;

 y = y + dy;

gp 0 ～ n(読み込んだ画像番号) 画像番号

num -2,147,483,648 ～ 2,147,483,647 制御用番号

flag -2,147,483,648 ～ 2,147,483,647

ただし、実行時の初期値は 0

制御用フラグ

life

0 ～ 2,147,483,647

数値が 0以下になると消滅

体力

attack -2,147,483,648 ～ 2,147,483,647 攻撃力

③ 「自機弾と敵機」、②「敵機弾と自機」、

③「自機と敵機」のいずれかの当たり判定が

ヒットした時、次の計算式が実行される。

自分の体力＝自分の体力－相手の攻撃力 (1)

相手の体力＝相手の体力―自分の攻撃力 (2)

ただし、③の当たり判定がヒットした場合は

式(1)のみが適用される。また②、③のあたり

判定がヒットした場合、自機は 40 フレーム

間判定を行わない無敵状態となる

timer1

timer2

0 ～ 2,147,483,647

1フレームに 1減算される。0以下に

なると、0に補正される。

タイマー１

タイマー２

ミサイルの発射のタイミングや移動の方向

を変えるタイミングに使用する。

frame 0 ～ 2,147,483,640

1フレームに 1加算される。

数値が範囲外に行くと自動的に補正

される。

現在のフレーム数(共通変数)

敵機の出現パターンを frameで制御する。

このように、

スクリプトファイルに記述

6

１０．初期値

 自機は、ゲームを起動したと同時に、予約変数に初期値が与えられる。各変数の初期値は表４

のようになる。また、１４節に説明している初期化判定 Init()を用いれば、キャラクター作成

時に初期値の再設定や、変数の宣言ができる。

表４ 初期値

変数名 数値

x

y

dx

dy

gp

num

flag

life

attack

timer1

timer2

frame

320

450

4

4

0

0

0

1

1

0

0

0

１１．代入

 代入は、変数に値を記憶させる動作である。それは、定数だけでなく、変数から読み取った値

や算術演算、論理演算、関係演算、等価演算の結果も記憶できる。

例）

① a = 0; 変数 a に 0を代入する。

② d = true; 変数 d に trueを代入する。

③ a = b; 変数 aに変数 bの値を代入する。

④ c = 5 + 4; 変数 cに計算式(5 + 4)の結果(9)を代入する。

⑤ a = a + 1; 変数 aに計算式(a + 1)の結果を代入する。

１２．算術演算

 数値計算は次の演算子を用いる。ただし、優先順位(2)と(3)の数値計算は、a,bともに Int型で

行わなければいけない。

表５ 算術演算子

優先順位 記号 名前 意味

1 () 括弧

2

a * b

a / b

a % b

乗算

除算

剰余

aに bをかける

aから bを割る

aを bで割った時の余り

3
a + b

a – b

加算

減算

aに bを足す

aから bを引く

4 a = b 代入 aに bを代入する

7

１３．制御文

(1)分岐処理 if

if 文は、表６の流れ図のように、条件が「成立するか(true,Yes)」、「成立しないか(false,No)」

によって異なる処理を行う。また、条件が成立しない(false,No)時に何も処理を行わない場合、

elseを省略することができる。例として、else無しでは絶対値を求めるプログラム、else有りで

は aと bの値を比較して、大きい方の値をmaxに代入するプログラムを示している。

ただし、if文では、実行文が１命令のみの場合は、{ }を省略することができる。

表６ if文の例

else無し else有り

if(a < 0) {

 a = -a;

}

if(a > b) {

 max= a;

}

else{

 max = b;

}

Yes実行文 Yes実行文

No実行文

elseの省略可

8

(2)条件式

if,while,for文の条件式は、表７の演算子を用いる。正しい場合は真(true,Yes)、正しくない場

合は偽(false,No)となる。等価演算子は、比べるデータの両方の型を Int型、Bool型のどちらか

に合わせる必要がある。

表７ 条件式の演算子

種類 演算子 優先順位 意味

括弧 () 1 表 4を参照

否定演算子

(Bool型)
!a 2 aの否定

乗算

除算

剰余

(Int型)

*

/

%

3 表 4を参照（算術演算子）

加算

減算

(Int型)

+

–
4 表 4を参照（算術演算子）

関係演算子

(Int型)

a < b

a > b

a >= b

a <= b

5

aは bより小さい

aは bより大きい

aは bより小さいか等しい

aは bより大きいか等しい

等価演算子

(Int型,Bool型)

a == b

a != b
6

aと bは等しい

aと bは等しくない

論理演算子

(Bool型)

a && b

a || b

7

8

aと bの論理積(aかつ b)

aと bの論理和(aまたは b)

代入

(Int型,Bool型)
= 9 表 4を参照

和・差・積・商・剰余を用いた算術演算子は数値計算のみなので、結果が Int型となってしま

い、これだけでは条件式として不十分な状態である。そこで、否定演算子、関係演算子、等価演

算子、論理演算子を用いて Bool型にしてから条件式として適用する必要がある。下記に、条件

式に適用した例を記述している。

例）

① a + b > 10 a + bの結果が 10よりも大きければ true、そうでなければ

false

② a + b > 10 && a + b < 20 a + bの結果が 10よりも大きい且つ、20よりも小さければ

true、そうでなければ、false

③ a + b < 10 || a + b > 20 a + bの結果が 10よりも小さいまたは、20よりも大きけれ

ば true、そうでなければ、false

9

(3)否定演算子、論理演算子

 否定演算子と論理演算子の入力と出力結果を真理値表とベン図に示す。

① 否定(aではない) !a

a 出力結果

true false

false true

② 論理積(aかつ b) a && b

a b 出力結果

false false false

false true false

true false false

true true true

③ 論理和(aまたは b) a || b

a b 出力結果

false false false

false true true

true false true

true true true

(a) 真理値表 (b) ベン図

図４ 否定演算子、論理演算子の真理値表とベン図

A

A B

A B

A

A∩B

A∪B

10

(4)繰り返し文① while

while文は、表９の流れ図のように、条件が「成立する(true,Yes)」場合に、繰り返し処理を行

う命令である。ただし、while文では、実行文が１命令のみの場合は、{ }を省略することがで

きる。例１では、１から９まで繰り返すプログラム、例２では、１～９までの合計を求めるプロ

グラムを示している。

表９ while文の例

例１(１から９まで繰り返す) 例２(１から９までの合計)

i = 1;

while(i < 10) i = i + 1;

sum = 0;

i = 1;

while(i < 10){

 sum = sum + i;

 i = i + 1;

}

While に適応させたい命

令が１命令の場合{ }を

省略できる

Yesの時繰り返し実行

Yesの時繰り返し実行

11

(4)繰り返し文② for

 for文は、表１０の流れ図のように、条件が「成立する(true,Yes)」場合に、繰り返し処理を行

う命令である。for 文の特徴は、while 文よりも機能が多く、可読性が高い部分にある。前回の

while文の例２のように、while文に入る直前に、「変数の初期値の設定(i = 0;)」があり、繰り返

しの命令の中に「変数の増減(i = i + 1;)」がある場合、for文としてまとめた形で書くことができ

る。

ただし、for文では、実行文が１命令のみの場合は、{ }を省略することができる。例は、１

～９までの合計を求めるプログラムを示している。

表１０ for文の例

１から９までの合計 プログラム

sum = 0;

for(i = 1;i < 10;i = i + 1){

 sum = sum + i;

}

12

１４．命令

(1)キーボード入力

次の命令を使用すれば、キーボードからの入力を調べることができる。対応したキーを押し

ているときは true、そうでないときは falseを出力する。下記に例を示す。

表１１ キー入力

命令 内容

UP()

DOWN()

LEFT()

RIGHT()

KZ()

KX()

KC()

KV()

方向キーの↑を押しているとき true、そうでないとき false

方向キーの↓を押しているとき true、そうでないとき false

方向キーの←を押しているとき true、そうでないとき false

方向キーの→を押しているとき true、そうでないとき false

Zキーを押しているとき true、そうでないとき false

Xキーを押しているとき true、そうでないとき false

Cキーを押しているとき true、そうでないとき false

Vキーを押しているとき true、そうでないとき false

例）

①

if(UP()){

 y=y-dy;

}

方向キーの↑を押したとき、yの値が dy

だけ減算される。

②

if(KZ() && timer1==0){

 PMissileSet(0,0,x,y,0,-10,1,1,0,0);

 timer1=30;

}

Zキーを押したとき、自機弾を x,yの位置

から上に 10の速さで発射する。

次の自機弾の発射まで 30フレーム待つ。

(2)初期化判定

 次の命令は、キャラクターが作成されたその時を調べることができる。それを利用し初期値

の再設定や、変数の宣言を行う。

表１２ 初期化判定

命令 内容

Init() キャラクターが作成されたフレームは true、それ以外は false

例）

if(Init()){

 life=100;

}

キャラクターが作成された時、そのキャラクターの life

を 100にする。

13

(3)乱数

 次の命令は、０から引数に入力した数に１を引いた値までの乱数を生成するものである。生

成した値は、変数に代入して使用する。

表１３ 乱数

命令 内容

Rand(x) 0～(x-1)までの乱数を生成する

例）

x=Rand(608) + 16; 変数 xに乱数(0～607) + 16を代入する。

(4)出力関数

 次の命令は、図５のような画面の(x , y)の位置に変数の値や定数を表示する命令である。実

行中に変数の中身を確認するために使用する。

表１４ 表示命令

命令 内容

Print(x,y,z) (x,y)の位置に変数 zの値を表示する

例）

Print(x,y,12345); (x,y)の位置に 12345の値を表示する。

図５ Print命令

0 640

0

480

y軸

x軸

(x , y)

12345

14

(5)キャラクター出現関数

 次の命令は、キャラクターを作成する命令である。ただし、画面に表示できる最大数以上の

キャラクターは作成できない。括弧内に定数を与えることで、キャラクターの初期値を与える

ことができる。それぞれのパラメータは、表１６に記載されている。

表１５ キャラクター出現命令

命令 内容

PlayerSet(gp,num,x,y,dx,dy,life,attack,timer1,timer2)

EnemySet(gp,num,x,y,dx,dy,life,attack,timer1,timer2)

PMissileSet(gp,num,x,y,dx,dy,life,attack,timer1,timer2)

EMissileSet(gp,num,x,y,dx,dy,life,attack,timer1,timer2)

自機を出現させる(1体)

敵機を出現させる(20体)

自機弾を出現させる(100発)

敵機弾を出現させる(100発)

表１６ 引数パラメータ

引数 説明

gp

num

x

y

dx

dy

life

attack

timer1

timer2

画像番号

制御用番号

キャラクターx軸

キャラクターy軸

x軸の移動量

y軸の移動量

体力

攻撃力

タイマー１

タイマー２

 出現命令の引数を表１７のように、４つに簡略化することも可能である。ただし、その他の

変数は、表１８の値が自動的に与えられる。

表１７ キャラクター出現命令

命令 内容

PlayerSet(x,y,dx,dy)

EnemySet(x,y,dx,dy)

PMissileSet(x,y,dx,dy)

EMissileSet(x,y,dx,dy)

自機を出現させる(1体)

敵機を出現させる(20体)

自機弾を出現させる(100発)

敵機弾を出現させる(100発)

表１８ 引数パラメータ

引数 数値

gp

num

life

attack

timer1

timer2

0

0

1

1

50

0

15

(6)自機狙い撃ち弾関数

 図６のように(x,y)の位置から自機に向かって、斜めに speedの移動量で移動するミサイルを

発射する場合、そのｘ軸の移動量(ShootX)と、y軸の移動量(ShootY)を計算することができ

る。

図６ 狙い撃ち弾の計算

表１８ 狙い撃ち弾

命令 内容

ShootX(x,y,speed)

ShootY(x,y,speed)

(x,y)の位置から、自機に向けての speedに対する移動量 xを計算

(x,y)の位置から、自機に向けての speedに対する移動量 yを計算

例）

if(timer1==0){

 tdx=ShootX(x,y,5);

 tdy=ShootY(x,y,5);

 if(tdx==0 && tdy==0) tdy=5;

 EMissileSet(0,0,x,y,tdx,tdy,1,1,0,0);

 timer1=50;

}

タイマー１が０になったら、５の速さ

の狙い撃ち弾の移動量を tdx,tdyに格

納し、敵機弾として発射する。

※tdx,tdyともに値が 0の場合、ミサ

イルが動かないので、強制的に下に５

進むようにする。

狙い撃ち弾計算式

ShootX=
自機 x−x

√(自機 x−x)2+(自機 y−y)2
× speed

ShootY=
自機 y−y

√(自機 x−x)2+(自機 y−y)2
×speed

speed（1フレームに移動する量）

ShootX

ShootY

自機(x,y)

(x,y)

自機 y − y

自機 x − x

√(自機 x − x)2 + (自機 y − y)2

16

(7)三角関数 Sin,Cos

 次の命令は、三角関数の値を求めるものである。式は次のようになる。ampは振幅、degは

角度[°]である。

Sinの命令=amp × Sin(deg)

Cosの命令=amp × Cos(deg)

表１９ 三角関数

命令 内容

Sin(deg,amp)

Cos(deg,amp)

角度 deg[°]、振幅 ampの Sinの値を求める

角度 deg[°]、振幅 ampの Cosの値を求める

例）

if(timer1==0){

 tdx=Cos(45,10);

 tdy=-Sin(45,10);

 PMissileSet(0,0,x,y,tdx,tdy,1,1,0,0);

 timer1=50;

}

タイマー１が０になったら、10の速さ

で 45°の移動量を tdx,tdyに格納し、

自機弾として発射する。

